

Back to Basics: Are You Aware of All the CAP Bugs?

George G. Zhanel, PharmD, PhD

Professor Department of Medical Microbiology/Infectious Diseases Faculty of Medicine University of Manitoba Coordinator, Antibiotic Resistance Program Clinical Microbiology, Health Sciences Center Winnipeg, Canada

CAP Topics

• <u>Etiology</u>

- Diagnosis
- · Site of Care
- Initial Empirical Treatment
- Prevention

Etiologic Diagnosis of CAP

- Symptoms, signs and laboratory features are **not specific** in identifying a particular pathogen
- Manifestations of pneumonia may reflect the host response more than the actual pathogen
- Sputum cultures: rarely rewarding for outpatients
- · Blood cultures: not practical for outpatients
- · Serology: not helpful in acute management

Mandell L, et al. Clin Infect Dis. 2007;44(Suppl 2):S27-72.

CAP Pathogens

Outpatients (80%)

- S. pneumoniae
- M. pneumoniae
- C. pneumoniae
- H. influenzae
- CA-MRSA

Viruses

GNR, Gram-negative rods Mandell L, et al. *Clin Infect Dis.* 2007;44(Suppl 2):S27-72. File TM. *Lancet.* 2003;362:1991-2001.

Inpatients (20%)

- S. pneumoniae
- H. influenzae
- M. pneumoniae
- C. pneumoniae
- Legionella spp.
- GNR
- S. aureus (CA-MRSA)
- Viruses

The Current Challenge of CAP **Emerging Etiology of CAP**

David S. Burgess, PharmD, FCCP

Professor and Chair Department of Pharmacy Practice and Science University of Kentucky College of Pharmacy Lexington, KY

Viral Pneumonia

- Most common viruses causing pneumonia
 - Influenza A virus
 - Respiratory Syncytial Virus (RSV)
 - Adenoviruses
 - Parainfluenza virues
 - Influenza B virus
 - Human metapneumovirus
- Viral pneumonia alone: ~13-50%
- Mixed bacteria and viral pneumonia: ~10-27%
- Mixed infections with bacteria and viruses usually result in more severe pneumonia

Marrie TJ, et al. Semin Respir Crit Care Med. 2012:33:244-256. Johansson N, et al. Clin Infect Dis. 2010;50:202-209.

Risk Factors for Resistant Organisms

- · Previous antibiotic treatment
- Previous hospital admission

- Nursing home
- Comorbidities cardiovascular disease, HIV, chronic respiratory disease, kidney disease
- · Hemodialysis
- Home wound care (past 30 days)
- Family member with resistant organism

Herrero FS, et al. Semin Respir Crit Care Med. 2012;33;220-231.

Antibiotic Resistance Among Common Pathogens Causing CAP

Microorganism	Antibiotic Class	Common Mechanisms of Resistance
Streptococcus pneumoniae	Beta-lactam	Alterations to penicillin-binding proteins (PBPs)
	Macrolide	 Efflux pump (mef A gene) Ribosomal methylation mechanism (erm B gene)
	Fluoroquinolone	 Mutations in fluoroquinolone resistance determining regions (<i>par</i> C and <i>gyr</i> A) Efflux pump
Mycoplasma pneumoniae	Macrolide	Point mutation in domain V of the 23S rRNA gene
Haemophilus influenzae	Beta-lactamase	 Beta-iactamase production (TEM-1, ROB-1, and poorly defined others) Macrolide efflux pump
Moraxella catarrhalis	Beta-lactamase	Beta-lactamase production (BRO-1, BRO-2, BRO-3)
Staphylococcus aureus	"Methicillin"	• mec A gene
Gram-negative rods	Various	Beta-lactamase production, including extended spectrum beta-lactamase (ESBL) Various other mechanisms

Managing the Many Bugs of CAP: An Ongoing Challenge!

Q

The Current Challenge of CAP

The One-Two Punch to Managing CAP: Risk Factors & Resistance

Debra A. Goff, PharmD, FCCP

Clinical Associate Professor Infectious Disease Specialist The Ohio State University Medical Center Columbus, OH

Risk Factors for Bacterial Resistance in CAP

- β-lactam (penicillins and cephalosporins)
- Macrolide
- Fluoroquinolone
- Risk factors for antimicrobial resistance

Definition of Resistance

- MDRSP (multidrug resistant *S. pneumoniae*) Resistance to ≥2 of the following: penicillin, ceftriaxone, erythromycin, tetracycline, levofloxacin, TMP/sulfamethoxozole
- MDR *S. aureus* Resistance to oxacillin, erythromycin, clindamycin, levofloxacin, tetracycline and TMP/sulfamethoxazole

Farrell DJ, et al. Clin Inf Dis. 2012:55(Suppl 3):S206-214.

History of S. pneumoniae Resistance

- Before 1990s: Majority of isolates were inhibited by penicillin <0.1 mg/L
- 1997-1998 surveillance study 13% resistance (MIC ≥2mg/L)
- 1999-2000 multicenter study 21.5% resistance (MIC ≥2mg/L)

File TM. Clin Inf Dis 2002;34(Suppl 1):S17-26.

Drug-Resistant Streptococcus pneumoniae (DRSP)

- · Nonmeningeal breakpoints
- Changed in 2008
- In the US, most drug-resistant S. pneumoniae are intermediate type

	New MIC (mg/L)	Old MIC (mg/L)
Susceptible	≤2	≤0.06
Intermediate	4	0.12-1.0
Resistant	≥8	≥2

Risk Factors for Drug-Resistant S. pneumoniae

	Risk Factors for Drug-Resistant S. pneumoniae	
\longrightarrow	Antimicrobial use in the past 90 days	
•	Extremes of age (<5 and >65 years)	
	Chronic heart, lung, liver, or kidney disease	
	Diabetes mellitus	
	Alcoholism	
	Malignancies	
	Asplenia	
	Immunosuppressive conditions or use of immunosuppressive drugs	
	Community or household exposure	
	Epidemiologic/geographic association	
	Institutionalization	
anderkooi OG, et al. <i>Clin Inf</i>	Clonal dissemination in crowded environments (eg. day care centers, hospitals, jails, long-term care facilities)	

Dis. 2005:40(9):1288-1297

File TM. J Manag Care Pharm. 2009;15(Suppl):S5-S11.

The Current Challenge of CAP

From Guidelines to Bedside: Therapeutic Approaches and Stewardship Tactics

Thomas M. File, Jr. MD, MS, MACP, FIDSA, FCCP

Chair, Infectious Disease Division Summa Health System Akron, OH Professor, Internal Medicine Master Teacher; Chair, Infectious Disease Section Northeast Ohio Medical University Rootstown, OH

Managing the Man	v Bugs of CAl	P: An Onaoina	Challenge

Managing the Many Dugs of CALL, AND	
From Pirates of the Caribbean Curse of the Black Pearl 2003	
Jack Sparrow: I thought you were supposed to keep to the	
 code (referring to the pirates code that "Any man that falls behind stays behind" when the Black Pearl waits for him to escape) Mr. Gibb: We figured they were more like guidelines rather than actual rules 	
The majority of recommendations in clinical practice guidelines are based on high level evidence.	
A. True B. False	
Editorial Comment	
Guiding in the Face of Minimal Evidence A Strength, Not a Weakness, of Graded Clinical Practice Guidelines Thomas M. File, Jr, MD • Strength of most recommendations NOT robust	
 Recent sinusitis guideline: 1/24 recommendations based on "high" level evidence 	
 "We are often called upon to make decisions for which there is less than robust evidence, yet for the sake of the patient care, we need to respond and often expeditiouslyeven though randomized controlled trials may not be available, the clinical question may be so relevant that it would be delinquent to not include it in the guideline." 	
File TM Jr. Infect Dis Clin Pract. 2010:18:151.	

The initial objective of performance measures is:

- A. To correlate reimbursement by CMS for hospitalized patients with appropriate care of infections
- B. To penalize poor practice of antimicrobial use
- C. To measure improvement of implementation of processes of care to maximize outcomes
- D. To develop evidence-based guidelines of care

Guidelines and Core Performance Measures

Core Measures: Effort to improve care of patients by measuring improvement

- Process of care measures: reflect evidence-based components of encounter between HCP and patients
 - Based on guideline recommendations
 - Within control of the HCP
- Outcome measures: mortality, readmission rate
- Provide method to assess improvement of care
- Now tied to reimbursement (Pay for Performance)

CAP: Joint Commission/CMS Performance Measures for Inpatients 2012

Blood cultures^a

- For all ICU patients;^a optional for general ward patients
 Prior to antibiotics if obtained in emergency department^a
- Empiric antimicrobials according to guidelines^a
 Exceptions: pathogen-directed therapy, clinical trials, diagnostic uncertainty
- Timely administration of antibiotics (6 h; 2008)^b
- Measurement of blood gases or pulse oximetry^c
- Assessment/administration—pneumococcal and influenza vaccine^d
- Smoking-cessation counseling
- CAP mortality (July 2008)
- 30-d readmission rate for pneumonia^e (2013)

Centers for Medicare and Medicaid Services and the Joint Commission. Specifications manual for national hospital inpatient quality measures. Available at: www.jointcommission.org/specifications_manual_for_national_ hospital_inpatient_quality.measures.aspx. Accessed November 7, 2012. File TM, et al. *Clin Infect Dis.* 2011;53(Suppl 1):S15-S22.

^a2012 Core Measure ^bRetired as CAP measure ^cRetired 2009

^dNow global measure

^eComplements Core Measures as part of the Hospital Readmissions Reduction Program hospitals with higher than expected 30-d readmission rates for AMI, heart failure and pneumonia and will incur penalties against their total Medicare payments beginning in FFY 2013.

Managing the Many Bugs of CAP: An Ongoing Challenge!

Q

Managing the Many Bugs of CAP: An Ongoing Challenge!

Guidelines: **Barriers and Solutions**

Barriers	Solutions	
Poor knowledge of guidelines	Disseminate info; Integrate in order sets; Involve Key Opinion Leaders	
Lack of agreement	Assess evidence and strength of recommendation; individualize	
Recommendations too complex	Establish clear recommendations	
Not relevant to local situation	Adaptable to local situation	
Lack of motivation	May be tied to performance measures (pay for performance)	

Adapted from File TM Jr. Impact of guidelines on antimicrobial treatment of RTIs. In Owens and Lautenbach (eds) Antimicrobial Resistance: Problem pathogens and clinical countermeasures. Informa Healthcare, NY 2008.

Impact of CAP Guideline Interventions: Better Outcomes at Bedside

Study	Intervention	Outcome
Gordon et al. ¹	Initial choice of ATB	CAP Guidelines assoc with lower mortality
Menedez et al. ¹	Initial choice of ATB	CAP Guidelines assoc with less mortality
Dean et al ¹	Use of Guideline	Decreased mortality
Capelastegui et al.²	Use of Guideline	Improved processes of care
Bodi M, et al ³	Use of Guideline ATB for Severe CAP	Decreased mortality

File TM. Impact of guidelines on antimicrobial treatment of RTIs. In Owens and Lautenbach (eds) Antimicrobial Resistance: Problem pathogens and clinical countermeasures. Informa Healthcare, NY 2008.
 Capelastegui, et al. *Clin Infect Dis.* 2004; 39:955-963.
 Bodi M, et al. *Clin Infect Dis.* 2005; 41:1709-1716.

Addressing the Challenge in CAP Management

Using Patient- and Pathogen-Centered Approaches to Care

A Series of Clinical Cases

Led by: George G. Zhanel, PharmD, PhD

Professor Department of Medical Microbiology/Infectious Diseases Faculty of Medicine University of Manitoba Coordinator, Antibiotic Resistance Program Clinical Microbiology, Health Sciences Center

Winnipeg, Canada

Patient 1: Meet Ron

CXR Courtesy of TM File

• 66-year-old male

- Smoker, diabetes, CHF
- Treated with macrolide for 'sinusitis' 8 weeks ago
 Grandfather, retired (farmer)
- Headache, fever, productive cough for 3 days, new confusion
- Temp: 101.8°F; Pulse: 110 BPM; RR: 28 breaths/min
- Auscultation: rhonchi in RLL
- O₂ sat: 92% in room air
- Patient is admitted to medical ward

Back to CAP Pathogens

Outpatients

- S. pneumoniae
- *M. pneumoniae*
- C. pneumoniae
- *H. influenzae*

Viruses

• S. aureus (CA-MRSA) • Legionella spp.

• GNR

- S. aureus (CA-MRSA)
- Viruses

Mandell L, et al. *Clin Infect Dis.* 2007;44(Suppl 2):S27-72. File TM. *Lancet.* 2003;362:1991-2001.

What Empiric Antimicrobial Treatment Would You Recommend? Why?

Inpatients

- S. pneumoniae
- H. influenzae
- M. pneumoniae
- C. pneumoniae

IDSA/ATS CAP Recommendations Inpatients (non-ICU Treatment)

Respiratory fluoroquinolone (moxifloxacin 400 mg, levofloxacin 750 mg) (Strong recommendation, Level I evidence)

Beta-lactam (ceftriaxone, cefotaxime, ampicillinsulbactam, ertapenem) PLUS a macrolide (Strong recommendation, Level I evidence)

New antimicrobials with CABP indication:

- Tigecycline
- Ceftaroline

Mandell L, et al. Clin Infect Dis. 2007;44 (Suppl 2):S27-72.

New Antimicrobials for Inpatient CAP

- Tigecycline (Tygacil[®]) IV¹
 - Glycylcycline: broad spectrum activity, including S. pneumoniae, atypicals
 - Approved for intra-abdominal infections, bacterial skin infections, CAP (non-ICU)
 - CAP: Comparable to levofloxacin
 - Listed as option for CAP admitted to general ward
 - 100 mg initially, then 50 mg q12h;
 - Adverse effects: N/V
- Ceftaroline (Teflaro[®]) IV²
 600 mg q12h

Zhanel GG, et al. Expert Rev Anti Infect Ther. 2006;4(1):9-25.
 Zhanel GG, et al. Drugs. 2009;69(7):809-31.

- Ceftaroline 59/69 (85.5%); Ceftriaxone 48/70 (68.6%)
 Ceftaroline has greater affinity for PBP-2a (4-fold > ceftriaxone)
- File TM, et al. Clin Infect Dis. 2010;51:1395-1405.

Patient Ron: Update

The patient was treated with ceftriaxone + azithromycin.

Now Day 3:

- Afebrile, other vital signs are stable
- Patient is alert with no unstable comorbidity
- O₂ sat: 98% in room air
- Sputum culture obtained on admission identified
- S. pneumoniae (Pen S).
- Blood culture was negative.

How Would You Change Your Antimicrobial Regimen?

Switch Therapy (IV to PO)

Switch Therapy

- When good clinical response, vital signs stable, comobidities stabilized, can take oral medication
- If pathogen identified, 'Directed' Therapy ("DE-ESCALATE")
- If empiric, can utilize 'negative' lab results to simplify therapy (e.g., if urinary antigen and blood cultures are negative)

Dunn AS, et al. Am J Med. 1999;106:6-10.

NOTES

Patient 2: Meet Peg

CXR Courtesy of TM File

- 30-year-old female presents to ER at 0400 with respiratory distress
 - Immediate intubation
- No prior medical problems, except for a recent ILI (influenza-like illness)
- Stay-at-home mom (toddler twins)
- Sent to ICU

Outpatients

- S. pneumoniae
- *M. pneumoniae*
- C. pneumoniae
- H. influenzae

Viruses

- S. aureus (CA-MRSA) Legionella spp.
 - GNR
 - S. aureus (CA-MRSA)
 - Viruses

Inpatients

• S. pneumoniae

• M. pneumoniae

• C. pneumoniae

• H. influenzae

Mandell L, et al. *Clin Infect Dis.* 2007;44(Suppl 2):S27-72. File TM. *Lancet.* 2003;362:1991-2001.

IDSA/ATS CAP Recommendations Inpatients (ICU Treatment)

 A beta-lactam (cefotaxime, ceftriaxone, ampicillinsulbactam) <u>PLUS</u> either azithromycin (Level II evidence) OR a respiratory fluoroquinolone (Level I evidence)

For penicillin-allergic patients, a respiratory fluoroquinolone and aztreonam are recommended (Strong recommendation)

- Special considerations
 - Pseudomonas (bronchiectasis, steroids....)
 - CA-MRSA (recent influenza.....)

Mandell L, et al. Clin Infect Dis. 2007;44(Suppl 2):S27-72.

Patient Peg: Update

- Gram stain of respiratory secretions shows Grampositive cocci clusters
- Bactec beeps after 24 hours
 - Blood smear shows Gram-positive cocci clusters

Managing the Many Bugs of CAP: An Ongoing Challenge!

What Pathogen Do You Think It Is? Gram-Positive Cocci in Clusters?

Patient Peg: Update

The patient was treated with ceftriaxone + moxifloxacin + vancomycin

Now Day 3:

- Patient is afebrile and alert, other vital signs are stable
- She has been extubated; O₂ sat: 96% in room air
- Sputum culture and blood culture grew *Staphylococcus aureus* and the Vitek II report reveals CA-MRSA

Managing the Many Bugs of CAP: An Ongoing Challenge!

How Would You Change Your Antimicrobial Regimen?

How Long Would You Treat This Patient?

- · Based on available data:
 - Minimum of 5 days if afebrile by 48-72 hrs for 'core pathogens'
 - Longer for other pathogens or evidence of extrapulmonary infection
 - S. aureus, Pseudomonas
- Shorter course therapy
 Reduced resistance, AE, cost

File TM, Niederman MS. Infect Dis Clinics North Am. 2004;18:993-1016. Mandell L, et al. Clin Infect Dis. 2007;44(Suppl 2):S27-72.

NOTES

Common Clinical Abbreviations

ABECB	acute bacterial execerbation of chronic bronchitic	нат	hospital acquired infaction
ABS	acute bacterial exacerbation of chrome bronemus	HAD	hospital acquired pneumonia
ADSCEL	acute bacterial shin and skin atmusture infections	IAI	intro and aminal infection
AECB	acute ovacerbation of chronic bronchiris		intersive care unit
AMCI	active exacerbation of enforce bronemus	IDSA	Infectious Diseases Society of America
AMK	amoxichim-clavulanate	IDSA	iminon om
AMD	amikacin		
ANIP	ampicinin	KPC LOS	<i>Rieostella pneumoniae</i> carbapenemase
ASP	Antimicrobial Stewardship Program	LUS	length of stay
AIS	American Inoracic Society	MDR	
AUC	area under the concentration-time curve	MDRSP	multidrug resistant S. pneumoniae
AWARE	Assessing Worldwide Antimicrobial Resistance	MIC	minimal inhibitory concentration
BAI	bronchoalveolar lavage	mMITT	microbiological modified intent-to-treat
BMT	bone marrow transplantation	MRSA	methicillin-resistant Staphylococcus aureus
BSI	bloodstroom infection	MSSA	methicillin-susceptible Staphylococcus aureus
	community acquired or community associated	MV	mechanical ventilation
CAPD	community-acquired bi community-associated	NNIS	National Nosocomial Infections Surveillance
CAD	community-acquired bacterial pneumonia	OPAT	outpatient parenteral antimicrobial therapy
CASS	community-acquired pheumonia	OXA	oxacillin
CAUTI	continuous aspiration of subgiottic secretions	PAE	post-antibiotic effect
CAUTI	catheter-associated urinary tract infection	PD	pharmacodynamic
CFP	cerepime	PICC	peripherally inserted central catheter
CIP	ciprofloxacin	РК	pharmacokinetic
CLABSI	central line-associated bloodstream infection	PTZ	piperacillin-tazobactam
CLSI	Clinical and Laboratory Standards Institute	SHEA	Society for Healthcare Epidemiology of America
Cmax	peak concentration	SHP	Society of Health-System Pharmacists
Cmin	trough concentration	SICU	surgical intensive care unit
cMITT	clinically modified intent-to-treat	SIDP	Society of Infectious Diseases Pharmacists
COPD	chronic obstructive pulmonary disease	SSI	surgical site infection
CPE	carbapenemase-producing Enterobacteriaceae	SSSI	skin and skin-structure infection
CR-BSI	catheter-related bloodstream infection	SSTI	skin and soft tissue infection
CSF	cerebrospinal fluid	%T>MIC	percent time above the MIC
cSSSI	complicated skin and skin structure infection	TBSA	total burn surface area
СТХ	ceftriaxone	TOB	tobramycin
CTZ	ceftazidime	UTI	urinary tract infection
CVC	central venous catheter	VAN	vancomycin
DAP	daptomycin	VAP	ventilator-associated pneumonia
DAT	delayed antimicrobial therapy	VAT	ventilator-associated tracheobronchitis
ESBL	extended-spectrum β-lactamase	VISA	vancomycin-intermediate Staphylococcus aureus
ETA	endotracheal aspirate	VRE	vancomycin-resistant enterococci
ETT	endotracheal tube		
FIC	fractional inhibitory concentration		
FQRP	fluoroquinolone-resistant P. aeruginosa		
GISA	glycopeptides-intermediate Staphylococcus aureus		
GNB	gram-negative bacilli		
GNR	gram-negative rods		

GPC gram-positive cocci

Continuing Professional Development (CPD): Reflect | Plan | Do | Evaluate

Managing the Many Bugs of CAP: An Ongoing Challenge!

Center for Independent Healthcare Education is committed to supporting pharmacists in their Continuing Professional Development (CPD) and lifelong learning. Please use this form to incorporate the learning from this educational activity into your everyday practice.

Continuing Professional Development: a self-directed, ongoing, systematic and outcomes-focused approach to learning and professional development that assists individuals in developing and maintaining continuing competence, enhancing their professional practice, and supporting achievement of their career goals.

CPD Value Statement:

"Pharmacists who adopt a CPD approach accept the responsibility to fully engage in and document their learning through reflecting on their practice, assessing and identifying professional learning needs and opportunities, developing and implementing a personal learning plan, and evaluating their learning outcomes with the goal of enhancing the knowledge, skills, attitudes and values required for their pharmacy practice."

REFLECT

Consider my current knowledge and skills in managing CAP, and self-assess my professional development needs and goals.

PLAN

Develop a "Personal Learning Plan" to achieve intended outcomes, based on what and how I want or need to learn.

Develop objectives that are specific for you, measurable, achievable, relevant to the learning/practice topic, and define the time frame to achieve them.

DO

Implement my learning plan utilizing an appropriate range of learning activities and methods.

List learning activities that you will engage in to meet your goals. List resources (e.g. materials, other people) that you might use to help achieve your goal.

EVALUATE

Consider the outcomes and effectiveness of each learning activity and my overall plan, and what (if anything) I want or need to do next.

Monitor progress regularly toward achievement of your goal.